
Bradford G. Van Treuren
Lucent Technologies, Inc.

vantreuren@lucent.com
Boundary-Scan and Test Strategies Group

The Role of Test Languages for 
Embedded System JTAG Testing

One Language Does Not Fit All



2

Outline
Test Language Theory
System Architectural Impact on Test Languages
System Operational Impact on Test Languages
System Complexity Impact on Test Languages
Conclusion



3

Test Language Roles
We use specialized languages for many test 
activities
Each language has a specific purpose for 
existence
The purpose defines the capability/scope of the 
language
Languages provide opportunity for portability
Languages provide a standardization of process 
and data to ensure repeatability



4

Purpose of Languages
Represent high level perspective of the problem 
domain
Language commands capture common process 
steps
Language commands capture many process 
actions in a single statement
Simplify ability to produce a repeatable process
Separation of data from the process
Capture/Preserve state information



5

Test Language Scopes
Ordered Pattern Representation Languages (e.g., 
Lucent Intermediate Test Language (ITL))
Static Representation and Application Languages 
(e.g., SVF – programming open-loop)
Dynamic Representation and Application 
Languages (e.g., STAPL – programming closed-
loop)
Application Programming Interfaces (API’s)
Flow Control Languages (e.g., IEEE 716-1995 
Standard Test Language for All Systems--
Common/Abbreviated Test Language for All 
Systems (C/ATLAS), Lucent TFCL™)



6

Current State of the Art
Vector-Based Languages

Free vector language players available for major 
JTAG vector languages (SVF, STAPL, 1532)
Distributed as source code
Players require upper level software written in 
C/C++ to manage and coordinate tests
Players only provide application of vector languages



7

Current State of the Art
Vector-Based Languages

Vector Player Features
Some players use a translated/compiled form of the original 
language (e.g., byte code, virtual machine code) to support 
more than one vector language (e.g., ispVM: SVF, STAPL, 
1532)
Difficult to recreate/follow original form of the vector 
language based on the Translated/Compiled code
Other players use a binary version of the original vector 
language file which preserves line information and 
improves performance by eliminating run-time semantic 
and syntax checking

Line information is important for single stepping through 
a test using original source or in accurately tracking the 
progress of the application



8

Current State of the Art
Model-Based Languages

High level dynamic modeled vector languages
– ASSET InterTech Macro Language1

– Goepel CASLAN™2

– Easily able to target a single device in the chain

General purpose language vector and modeling 
API’s supporting:
– C/C++
– Tcl/Tk
– VBScript
– LabView
– Etc.

These languages are unable to be embedded in-system 
because of their model overhead so we need to rely on 
header and trailer information as a workaround

1. http://asset-intertech.com/jtag_scanworks_testautomation.html#Macro
2. http://www.huntron.com/Products/Boundary/cascon.htm



9

Outline
Test Language Theory
System Architectural Impact on Test Languages
System Operational Impact on Test Languages
System Complexity Impact on Test Languages
Conclusion



10

Star and Multi-drop Architecture
Intra-Board Testing Language Issues

Management of vectors/tests with boards
Identification of board types per slot
Board selection vs. vector application
– Need common design solution for both architectures

Current support status by standard vector 
languages
– Chain selection support for 1149.1 compliant protocols
– Extended 1149.1 support for SCAN Bridge selection 

protocol for Multi-drop
– No support for ASP/LASP selection protocol for Multi-drop
– No support for ad hoc JTAG Star topology



11

Star and Multi-drop Architecture
Inter-Board Testing Language Issues

Inter-board testing requires coordinated application of one 
vector at a time to each board
Current vector languages assume a batch flow of the vector 
file (all or nothing)
– Current languages are unable to provide sequencing across 

boards designed without 1149.1 compliant gateway devices 
(e.g., SCAN Bridge interface)

– Many have augmented the vector language to support selection 
commands for ASP/LASP as part of the language to provide the 
sequencing

SCAN Bridge becomes part of the board chain after selection 
so the parking and waiting part of the protocol must be 
embedded in the test vectors to preserve the board signal 
state during these operations



12

Star and Multi-drop Architecture
Inter-Board Testing Observations

Each board instance of a given type will eventually 
apply the same vector patterns to test the edge 
connector
– Each pin must go through a 0-1-0 transition

Inter-board testing requires vector reuse to reduce 
the memory volume required for vector storage
Integration of the chain selection protocol in the 
vector language eliminates the possibility for vector 
reuse across board instances unless the language 
supports modular programming features like 
procedure calls or dynamic importing/linking



13

Outline
Test Language Theory
System Architectural Impact on Test Languages
System Operational Impact on Test Languages
System Complexity Impact on Test Languages
Conclusion



14

Star and Multi-drop Architecture
Operational Issues

Most system software for functional test delegates 
the diagnostics and reporting to a board-centric 
architecture
A Multi-drop architecture does not integrate well 
with board-centric diagnostic reporting methods
Multi-drop/Star board testing also requires 
rethinking of vector storage/application in an 
embedded implementation vs. on-board testing



15

System JTAG Integration Role
Embedded Boundary-Scan interface should be able 
to leverage the current system infrastructure used 
for functional test
System software should be responsible for ensuring 
the UUT is in the proper state for the operation prior 
to calling the JTAG test
– On-line
– Stand-by
– Off-line
– Out of service



16

Fault Management System
Fault Management Flow Chart

Detection

(On-Line)
Diagnostics

Isolation

Recovery

Repair

(Off-Line)
Diagnostics

Prediction

Notification

http://www.goahead.com/pdf/HA%20SolutionsWP.pdf



17

Diagnostic Manager…
•Test execution logic, 
management, and 
coordination
•Common console 
interface for local and 
remote access
•Console command 
processing
•Console message 
construction for results
•Common interface to DA 
test suites

Product Application Software
(Ideal System Diagnostics)

Test
Console/ 
Terminal/ 

PC

Diagnostics
Manager (DM)

Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—in’s”

Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—in’s”

Line Card Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—in’s”

Feature Card

Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—in’s”

Line Card

Controller Card

Plug-in’s for 
specific test 
routines such as:
•Memory tests
•Register tests
•I/O tests
••JTAG testsJTAG tests
•Firmware 
reprogramming
•Etc. …

If necessary, Wrapper 
API’s map interfaces on 
various diagnostic 
plug-in’s to the 
interface required by 
diagnostic agent

Diagnostic Agent…
•Coordinates on-board 
test/diagnostic actions
•Reports results to DM
•Maps DM test requests 
to local test application

Concepts inferred from 
http://www.goahead.com/pdf/BuildingHighrelilSys.pdf



18

System JTAG Integration Role
Just as there are diagnostic “plug-ins” for system 
software there should be language “plug-ins” to 
support the various forms of JTAG testing/enabling
Propose:  Test Coordination Language Layer 
needed between vector players and system level 
software
– Allows software engineers to focus on system state 

management, error handling and system reporting (what 
they are good at)

– Allows test engineers to focus on the test application and 
coordination (what they are good at)

Treat JTAG vector language players as “Language 
Plug-ins” or small “Test Steps” in the overall 
coordinated test operation



19

System JTAG Integration Role
History has shown there will always be a new 
language on the horizon to perform a new JTAG 
based operation (e.g., SVF->STAPL->1532)
The Test Coordination Language needs to be able 
to isolate the changes in the way we do JTAG 
operations in the system from the system 
diagnostics interface
The Test Coordination Language needs to be able 
to treat all the operations required for performing a 
test (e.g., gateway access, chain selection, 
application of test vectors, programming) as a single 
autonomous entity to the system diagnostics 
software – A JTAG Application/Test



20

Outline
Test Language Theory
System Architectural Impact on Test Languages
System Operational Impact on Test Languages
System Complexity Impact on Test Languages
Conclusion



21

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Super-super fabric Frame Level Power

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Cubes

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

F
A
B
R
I
C

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Application Study: Supercomputer



22

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Cubes

Super
Fabric
Cube

Super-super fabric Frame Level Power

System Block Diagram



23

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Cube Cube Cube

Cube SF Cube

Cube Cube Cube

Super-Super
Fabric

(ATCA Based)

System Mechanical Design



24

Testability of Complex Systems
Test Factors

Interconnections between fabrics and frames are 
accomplished using a “Cable Backplane”
– Hundreds of cables are manually installed
– Likelihood of incorrect or missing placement is high
– Difficult to isolate failing cable using functional test on an 

N-wide channel (Reason for using 1149.6 or IBIST® in the 
Cube)

Different system configuration for each customer 
base
Traditional functional loop-back tests take too long 
to perform on all interconnections



25

Testability of Complex Systems
The interface between cubes and super-fabric 
cubes and between super-fabric cubes and super-
super-fabric cubes use the same SERDES or fiber 
technology used at the board and backplane level in 
the cube
What prevents us from using the same tools and 
techniques to test these fabric interfaces?  
Connectivity!
There is no physical unified JTAG interface between 
these elements to allow for the use of 1149.6 or 
IBIST to perform the coordinated testing



26

Scan Interface Proxy Architecture
Based on Proxy Design 

Pattern for Software
A Remote Proxy provides a 

reference to an object located 
in a different address space on 
the same or different machine
Scan Interface Proxy is used 

to extend the JTAG scan 
interface to a remote system to 
provide the same behavior on 
the remote system as if it were 
connected locally

Subject

ProxyRealSubject
realSubject

Request( )Request( )

Request( )

realSubject->Request( )

Client



27

Scan Interface Proxy Architecture
Proxy interface to multiple 

remote JTAG Software interfaces 
provides a coordinated virtual 
Hierarchical Star or Multi-drop 
architecture over an established 
communications channel
Requires the communications 

channel to be tested 
independently of the JTAG testing 
facility
The communications channel 

may be a single pair of SERDES 
operating at relatively slow 
speeds (Mbps)

Yet another chain selection 
interface definition for a test 
language to support

JTAG
SW

ScanProxy

EBS

JTAG
SW

RealScan

EBS

Communications Channel

Remote System

Master Control System



28

Outline
Test Language Theory
System Architectural Impact on Test Languages
System Operational Impact on Test Languages
System Complexity Impact on Test Languages
Conclusion



29

Conclusion
Each language used for JTAG has a special purpose
Selection of board/system gateway chains should be 
done at a level outside the vector language since there 
are many methods used for gateway/chain selection 
operations
For 1149.1 compliant gateway protocols, separate 
vector files or procedures should be used for selection 
and parking operations to ensure ability to reuse vectors 
for multiple instances of the board in a system
Non-1149.1 gateway protocols/methods should be 
treated as separate test operations from the vector 
language – Otherwise, the vector language will always 
be changing as new methods appear



30

Conclusion
JTAG applications must resemble a functional test to be able 
to leverage existing system diagnostic facilities already 
required in a system
The details of what is done during a JTAG application must 
be abstracted away from the system diagnostic software to 
ease integration and provide test flexibility
A middleware language layer performing Test Coordination 
provides the abstraction and test flexibility required
Each vector language should be implemented as a 
“Language Plug-in” to the Test Coordination language
The Scan Interface Proxy provides a close approximation to 
the Star and Multi-drop architectures to support JTAG 
operations for isolated JTAG implementations


