JTAG System Test in a MicroTCA World

BTW 2006
2006 IEEE 5th International Workshop on Board Test

Bradford G. Van Treuren – Lucent Technologies, Inc.
Adam W. Ley – ASSET InterTech, Inc.
Outline

- 50,000 ft Overview of MicroTCA
- Decision Process for System-Level JTAG Architecture
- Overview of the JTAG Switch Module
- Programming and Chain Selection Issues
- Conclusions
50,000 ft Overview of MicroTCA

- Complimentary standard to PICMG 3.0 (ATCA)
- Designed to address cost sensitive and physically smaller applications
- Deploys Advanced Mezzanine Cards (AMCs) as blades facilitating collections of high diversity and high density
- Virtualizes the ATCA Carrier
 - AMCs plug directly into a stand-alone chassis backplane
 - MicroTCA Carrier Hub (MCH) modules provide fabric interconnection and system management functions
- Standardized Power Management
- Dynamically configurable/
supports Hot Swap
 - AMCs already support JTAG at edge
 - MicroTCA Goal: MUST support System-Level JTAG Test
MicroTCA Packaging Options

Single Shelf

Tall Shelf

Two Tier Shelf

Back-to-Back Shelf

Cube Shelf

Pico Shelf
Decision Process for System-Level JTAG Architecture

Pipe Dreams

- First industry standard system bus architecture to be designed to support JTAG testing at the system level
- AMC standard already supports JTAG at edge
- Need test architecture as flexible as Multi-drop but does not require gateway devices to apply JTAG tests/upgrades to each AMC from external and embedded testers
- What test structure should be used?
 - Ring/Daisy-chained TAP
 - Full Star/Radial Interface
 - Multi-drop
 - JTAG over IPMI/IPMB
 - JTAG over Ethernet
Decision Process for System-Level JTAG Architecture

Problems Encountered

- **Ring/Daisy-chained TAP**
 - Chain modified if slot depopulated or upgraded

- **Full Star/Radial Interface**
 - Not enough pins available on MicroTCA Carrier Hub (MCH)

- **Multi-drop**
 - No gateway devices on AMCs

- **JTAG over IPMI/IPMB**
 - New IPMI protocols needed
 - Performance of current IPMB in MicroTCA not fast enough
 - Change required for AMC and IPMI specifications

- **JTAG over Ethernet**
 - New protocols needed
 - Requires AMC to be programmed and partially working
 - Change required for AMC specification
Decision Process for System-Level JTAG Architecture

Agreed-Upon Solution

- **JTAG Switch Module (JSM)**
 - Mounted on or near backplane as a plug-on module to backplane or as a specialized blade
 - Provides a JTAG Switch interface from each MCH and from an External Tester
 - Provides single TAP interface to each AMC
 - Provides single TAP interface from/to each MCH
 - Provides external TAP interface from External Tester
 - Allows for connection to each AMC individually
 - Provides “parking” of AMC in stable TAP states
Overview of the JTAG Switch Module

- Specification recommends a chain topography
- Specification does not mandate a specific design
- Specification does not mandate a specific control protocol
 - SPL, SCANBridge, ASP, other protocols could work
- Provides Configurable Star architecture on the back end
 - User programs a CPLD or FPGA for the Port Switch to implement the desired architecture for a given system configuration (e.g., Ring, Star, Hybrid)
Overview of the JTAG Switch Module

- **MCH1 JTAG Interface**
- **MCH2 JTAG Interface**
- **Ext. JTAG Interface**

Primary Port
- **Mode Switch**

Configurable Port Switch

May be CPLD or FPGA

- **AMC1 Interface**
- **AMC7 Interface**
- **AMC2 Interface**
- **AMC8 Interface**
- **AMC3 Interface**
- **AMC9 Interface**
- **AMC4 Interface**
- **AMC10 Interface**
- **AMC5 Interface**
- **AMC11 Interface**
- **AMC6 Interface**
- **AMC12 Interface**

2 secondary ports allow MCH(s) to be test target(s)

May be CPLD or FPGA
Overview of the JTAG Switch Module

- **MCH1 JTAG Interface**
- **MCH2 JTAG Interface**
- **Ext. JTAG Interface**
- **Configurable Port Switch**

External Test Tool Interface Port, Buffers and Termination

Only 6 pins available for JTAG on each MCH

3.3V

- **TDI1**
- **TDO1**
- **TCK1**
- **TMS1**
- **JSMCONFIG#1**
- **TMREQ#1**

- **TDIe**
- **TDOe**
- **TCKe**
- **TMSe**
- **TRST#e**
- **TMREQ#e**
- **JSMCONFIG#e**

- **Config. TRST Logic (optional)**

- **Primary Port Mode Switch**

- **Configuration TAP (optional)**
Programming and Chain Selection Issues

- Programming Issues
 - MCH TAP is bi-directional
 - Dual role for TRST# from MCH (Test Reset/Programming of PS)
 - Additional signal required from External Testers
 - System-Test languages must support GPIO coordinated with scan operations (Test Reset/Programming control)
 - Programming not necessary if ASIC/ASSP design is used
 - Secondary chains must be held in a default inactive state during programming of PS
Programming and Chain Selection Issues

Chain Selection Issues

- What selection protocol to use? TBD by the system builder
- ATPG tools must be able to support chosen protocol
- For slot independent architectures to support inter-slot testing, the Port Switch must be able to “park” a given slot in a stable TAP state on disconnection of the slot
- JSM must provide a way to perform global Test Reset
- JSM is not required to provide a broadcast state transition
 - MicroTCA architecture ensures that each blade can be brought up in an observe only mode – no conflicting signals
 - ATPG algorithms are constrained to drive from a single blade only
Conclusions

- Even with the pin constraints for MicroTCA, **System-Level JTAG** is still possible.

- The JSM architecture provides the **same flexibility** that comes from a Multi-drop architecture to support **dynamic configuration** inherent to Hot Swap.

- Since the selection protocol is not governed by PICMG there may be a question of **system compatibility** but, unlike the case with Multi-drop architectures, the MicroTCA-specified solution **ensures blade compatibility**.

- The JTAG Switch Module is a Field Replaceable Module.

- A **re-programmable Port Switch** is not required to support System-Level JTAG.

- FPGA/CPLD vendors and ASSP vendors are beginning to design flavors of JSMs for use in MicroTCA.