
An SJTAG Interface Perspective

Bradford G. Van Treuren



Outline

�Purpose of Presentation

�Uses of JTAG Interface

� Insights to Modularity

� Leaf Functions for JTAG

� Layers of Software for Traditional EBST

� Interface Boundaries

�Standardization of Interfaces

�SJTAG Data Perspective

�Conclusions



Purpose of Presentation

Inspire people to begin to discuss further 
how JTAG could be leveraged by their 
own current designs by providing what 
the SJTAG goals state – including data 
contents and formats communicated 
through all interface boundaries – as 
open, standard, vendor-independent, 
non-proprietary ways that are 
repeatable and predictable.



A Look at Software Interface Boundaries

IS IT POSSIBLE TO DEFINE 

INTERFACE BOUNDARIES

BETWEEN FUNCTIONAL 

ELEMENTS IN OUR 

EMBEDDED BOUNDARY 

SCAN SYSTEMS?



Uses for JTAG Interface
� Testing
� Monitor/Sample
� Chain Selection/Management

– Addressable Shadow Protocol (ASP)
– Scan Path Link

– Scan Bridge

� FPGA/CPLD Programming
� FLASH Programming
� IJTAG/Instrumentation
� Emulation

– Board Debug Mode (BDM)

– Nexus (Based on 1149.1)
– Extended JTAG for MIPS (EJTAG)
– Compact JTAG for Mobil Devices (cJTAG)

Fixed Set of Vectors

Fixed Set of Vectors with Optional GPIO

Fixed and Dynamic Sets of Vectors

Dynamic Set of 
Vectors with 

Optional GPIO



Insights of Modularity

“SJTAG seems to be to JTAG
what iSCSI is for SCSI.” Jeffrey 
Moore, EMC2

“An implementation of an SJTAG 
architecture in a system allows Test 
Programs, running on Test 
Controller(s), to operate on Bscan
controlled Functions in Bscan
enabled components.” Gunnar 
Carlsson, Ericsson (SJTAG Vice Chairman)



Leaf Functions for JTAG

� Functions for configuration of scan chain segments
� Functions for accessing scan registers

– E.g., PRELOAD BSR, LOAD BSR, SELECT BYPASS

� Functions for accessing built-in features
– Execute the actual test (e.g., BIST operations)
– Samples and Measurements (e.g., SAMPLE, 1149.4)
– Etc.

�BSDL defines 1149.1 vector patterns for functions

�Languages, such as STAPL and SVF, define vector 
patterns and not functional behavior so intent is lost

�We need to manage the intent of the patterns in 
embedded environment



Layers of the Software for Traditional EBST

�Apply a set of vectors

�Capture a set of responses

�Compare responses to known 
expected values

�Conditionally apply next set of 
vectors based on response 
result of PASS or FAIL

�Fixed set of tests that are 
applied over and over again

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test 
Manager

Test 
Controller

?



Interface Boundaries of the Software

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test Program Interface

Test Step Interface

Scan Interface

TAP Interface

Test Package Interface

SVF

STAPL

Potential 
Standardization 

of Interface

Example of standard 
that defines interfaces 
but not the body of the 

software



TAP Implementation Variability
� GPIO with Software base 

providing Parallel to Serial 
Conversion for IEEE Std. 
1149.1 testing

� Specialized TAP Interface 
Device

� Specialized TAP Interface 
Intellectual Property (IP)

� Hybrid GPIO with Automated 
Data Shifters

� Uplink/Downlink TAP
� Scan Sequencers
� Scan Coprocessors

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test Program Interface

Test Step Interface

Scan Interface

TAP Interface

Test Package Interface

�Not a candidate for standardization



Traditional JTAG Functions
� IR Scan
�DR Scan

�GOTO State
�RunTest
� Frequency
�Async TRST

�Raw Bit Bang TAP

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test Program Interface

Test Step Interface

Scan Interface

TAP Interface

Test Package Interface

�Good candidate for standardization 
of interface



Program/Emulator Specialization
�PIO Support

– Functional
• HRESET

• SRESET

• Write Pulse (WP)
AND/OR

– General Purpose
• SetBIT

• GetBIT
• SetBITSET

• GetBITSET

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test Program Interface

Test Step Interface

Scan Interface

TAP Interface

Test Package Interface

�Could these be supported through 
extension functions?

�How would a language access 
these functions?



Non-Scan Extensions?

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Set/Clear Operations
(Represents Leaf Functions

as Bit Values)

GPIO Operations ?



SJTAG Test Programs and Procedures
The intent behind the test program

� Each Test Step represents 
smallest diagnosable 
Function/Action/Activity
for a UUT (e.g., Interconnect 
Test, ERASE, PROGRAM, 
VERIFY)

� Test Programs manage the 
execution order of and 
results from Test Steps

Test Package and Test
Program Flow Control (Ordered

collection of Test Programs)

Test Programs and Test Step
Flow Control (Ordered collection

Of Test Steps)

1149.1 Scan Operations
(Represents Leaf Functions

as Vector Patterns)

Test Access Port
Controller Operations

Application

Test Steps
(Ordered collection of

Scan and PIO Operations)

Test Program Interface

Test Step Interface

Scan Interface

TAP Interface

Test Package Interface

�Management interface to Test 
Programs and results could be 
standardized

�Management interface to Test 
Packages could be standardized

TFCL™



What about the data we use?

IS IT POSSIBLE TO 

MIGRATE TEST DATA INTO 

THE EMBEDDED 

ENVIRONMENT IN A 

USABLE FORM TO SUPPORT 

DIAGNOSTICS?



Analysis of Interconnect Test for EBST Diagnostics
Thinking outside the box!

�What can we mine/extract from this analysis?
– Constant chain topology for entire test

– Test vectors do not preserve test intent

– Drivers cannot be deduced from test vectors

– Observers can be deduced from MASK values

– Failures detected by observer miscompares

� Is there a way to use this information to simplify 
diagnostics reporting in the EBST environment?



SJTAG Data Perspective
Interconnect ATPG Example

– Netlist

• Set of signals

• Set of devices

• Mapping of signals to 
device pins

• Mapping of devices to 
characteristics

– BSDL

• Set of ports

• Set of pins

• Set of cells

• Mapping of cells to cell 
types

• Mapping of control cells 
to driver cells

• Mapping of cells to ports

• Mapping of ports to pins

�Net – Device Pin – Device Cell – Chain Cell

�What data do we need 
for test generation?



SJTAG Data Perspective
Interconnect ATPG Example

�What data do we really need from ATPG 
process for Failure diagnostics?
–BSDL

• Position of cells in device
• Mapping of cells to device pins
• Number of cells in the device’s configuration

–Netlist
• Mapping of device pins to signals
• Position of device in the scan chain (Yields position 
of cell in chain)



SJTAG Data Perspective
Interconnect ATPG Example – Data Representation

�Databases store data in tables
�Related information contained on same row

�Can we use a table for diagnostic data storage in EBST?

…………
CEIC26.12IC26.8138

WRITEIC26.10IC26.7137

SIG1IC3.A5IC3.55

NetsDevice PinDevice CellChain Cell

Table: DIAGDATA

�Net – Device Pin – Device Cell – Chain Cell



Conclusions

�We can learn from other industries how to better 
analyze SJTAG roles.

�We need to be thinking outside the manufacturing 
test mentality for EBST diagnostics

�We can find places for standardization in the 
software – SW Interface definitions

�Non-Test applications may reuse/leverage lower 
level standardized interfaces of the SW stack 
without a common implementation

� It is possible to provide real-time failure diagnostic 
feedback from an EBST environment


