
The NSDL Process Flow

Bradford G. Van Treuren and Michele Portolan

November 2008

2 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Outline

� System Level Embedded Testing

� Working Group History (April 2008 Discussion)

� LabVIEW Model

� Generalized Batch Process Flow

� Generalized Interactive Process Flow

� NSDL Instrument Description Model

The NSDL Process Flow

System Level Embedded Testing

Bradford G. Van Treuren and Michele Portolan

November 2008

4 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Examples of Instrumentation Used at the System Level

System JTAG
Interface

Power
Management

Thermal
Monitoring

Voltage
Monitoring

On-Chip
Voltage

Monitoring

Amplifier
Tuning

BERT

Fault
Injection

On-Chip
Thermal
Monitoring

Alarm Trigger
Monitoring

BIST

5 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Diagnostics
Manager (DM)

Test
Console/
Terminal/

PC

Controller Card

Diagnostic Manager…
•Test execution logic,
management, and
coordination
•Common console
interface for local and
remote access
•Console command
processing
•Console message
construction for results
•Common interface to DA
test suites

Typical Embedded Systems Application Software

Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—ins”

Line Card Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—ins”

Line Card Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—ins”

Feature Card

Diagnostics
Agent (DA)

Wrappers

Diagnostic
“Plug—ins”

Plug-ins for specific
test routines such
as:
•Memory tests
•Register tests
•I/O tests
••JTAG testsJTAG tests
•Firmware
reprogramming
•Etc. …

If necessary, Wrapper
APIs map interfaces on
various diagnostic
plug-ins to the
interface required by
diagnostic agent

Diagnostic Agent…
•Coordinates on-board
test/diagnostic actions
•Reports results to DM
•Maps DM test requests
to local test application

6 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Embedded Boundary-Scan Test Software

System Diagnostics
Interface

Isolate changes in
the way we do

JTAG operations
from the System

Software

Software Engineers

•System State Mgmt

•Error Handling

•System reporting

Test Engineers

•Test application

•Test coordinationSVF

STAPL IEEE 1532

New languages to perform new JTAG based operations

Other
Languages

System JTAG Integration Role

The NSDL Process Flow

Working Group History (April 16, 2008)

Bradford G. Van Treuren and Michele Portolan

November 2008

8 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

iJTAG SW problem statement (Jeff-R)

4/16/08

Perl Python TCL C C++ C# STIL

Perl Python TCL C C++ C# STIL

?

Instrument
provider

Chip
integrator

Perl Python TCL C C++ C# STIL

Perl Python TCL C C++ C# STIL

Case 1: Burden on IP provider

Perl Python TCL C C++ C# STIL

Perl Python TCL C C++ C# STIL

Case 2: Burden on integrator

Perl Python TCL C C++ C# STIL

Perl Python TCL C C++ C# STIL

Case 3: Ecosystem (all flavors) Case 4: What you really want
Instrument

provider

Chip
integrator

Can we do this?
How?

9 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

iJTAG Software Problem: Common Functional Description Language Translation

• Standardizes language to simplify instrument provisions and interpretation

• Provides for high level problem domain descriptions of functions

• Allows EDA and Scan Tool vendors to implement functions in their own tool

environment/architecture instead of a 1687 view architecture

• Supports efficient flow control generation for dynamic control of instruments

including support for efficient embedded control (e.g., STAPL control flow)

• Could leverage existing VHDL flow control description to simplify tool integration

• Tool interpretations may differ if language is too ambiguous

Perl Python TCL C C++ C# STIL

Perl Python TCL C C++ C# STIL

NSDL, PDL, ?

Case 5: Translations from a Common Functional Description Language

Instrument
provider

Chip
integrator

Common Functional Description Language
Translator/Parser

Chip
integrator

10 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical Scan Tool Vendor Implementation for Case 4 with proposed “C” Driver

• Instrument control performed by

Tool Vendor Application based on

aggregate instrument operations

over entire chain (concurrency

control) through wrapper

• Instrument access performed

through Tool Application or direct

scan model updates using

registered callback handles (not

supported by SWIG) for the

Instrument Access Layer (e.g.,

1687 primitives: GETREG, SETREG,

WAIT, …) [Different size registers:

Loss of type checking]

• Tool must manage instrument

instance data and driver

associations

Hardware Access Layer (HAL)

Instrument Driver

(C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

Instrument Driver

(C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

Instrument Driver

(C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

Instrument Driver

(Instrument

Vendor

Provided

C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

System/Board

Scan Model

Tool Vendor Application

TAP Driver TAP Sequence
Recorder

SVF GeneratorSTAPL Generator

V
e
n
d
o
r
L
a
n
g
u
a
g
e
 o
f
C
h
o
ic
e

11 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical EDA Tool Vendor Implementation for Case 4 with proposed “C” Driver

GUI

Interface
Wrapper

Interface
Wrapper

Interface
Wrapper

Interface
Wrapper

Scripting Language (e.g., Perl or TCL)

EDA

Engine
Database

Numerical

Modeling

Interactive Use or Scripts

Where does the Instrument Driver fit in?

Instrument Driver

(Instrument

Vendor

Provided

C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

Instrument Driver

(Instrument

Vendor

Provided

C Interface)

Interface Wrapper
(SWIG)

Instrument Access
Layer (Callback)

?

?

12 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Dynamic Programming Languages (aka, Scripting Languages like Tcl and Python)

(From: http://www.tcl.tk/doc/scripting.html)

� Dynamic languages are typically interpreted, highly introspective, and

emphasize integration and extension to add new capabilities.

� Scripting languages are intended primarily for plugging together components.

� Scripting languages do their error checking at the last possible moment

(execution of that statement).

� Compiled byte code is still an interpreted language where most compilers do

not perform semantic validation until run-time via the expression validator.

� Dynamic Programming Language compilers are unable to validate information

residing in extension modules written in a different language.

� If instrument Instr3 is not represented in a C extension, that error will not be

reported until the scripted statement using Instr3 is executed, leaving the circuit in a

half modified state.

� Dynamic Programming Languages require extensive error handling code that is

generally not written by most users.

� Script generators can provide continuity of model access across extensions.

13 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Utopia: Support Case 4 and Case 5

• NSDL provisions the use of explicit NSDL functional descriptions (with VHDL

control flow) and/or delegated native language functional implementations

o Michele’s logic analyzer and MBIST examples for functional description use

o Michele’s parallel interface example for delegated native language use

• Allows for compositions of simple instruments to operate as a single complex

instrument with a single high level functional interface description leveraging

subordinate instrument features/functions (Coordinated hierarchical control

in the problem domain) [Something not possible with C proposal]

• This feature allows for fast integration of instrument blocks to create a more

complex coordinated instrument using basic building block designs

• Allows for proprietary design integration using the same library mechanisms

of VHDL or the delegated native language functional implementation

�It is possible to achieve the best of both worlds in a single
unified solution!

The NSDL Process Flow

LabView Model

Bradford G. Van Treuren and Michele Portolan

November 2008

15 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

LabVIEW Basics

• Instruments are represented as:

� a set of registers

� a set of states

• Instruments post events to a Queued State Machine as instrument states are

changed

• Instrument states may change as a result of a command event from the

Queued State Machine (e.g., a change request in a register value)

• Instruments may also post events due to internal change events within the

driver software (e.g., interrupt handler events)

• All access to instrument information done using proprietary LabVIEW

messaging API

16 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Virtual Instrument Driver

VI Plug-n-Play
Instrument Driver API

Instrument Vendor
Provided

Autonomous
Driver

VI Plug-n-Play
Instrument Driver API

Instrument I/O
Assistant based

Driver

Dynamically
Linked
Library

Dynamically
Linked
Library

I/O Primitives Driver

Queued State Machine –
Producer/Consumer

LabVIEW GUI Labwindows CVI/TestStand

User Defined Application

LabVIEW Messaging API

•Autonomous and
independent
instrument access
protocols

•Instrument
unaware of other
instruments

•Advertizes
instrument registers
and states

•Getters and Setters
of instrument
registers and states

•Management of
register values and
instrument state
performed at higher
level

17 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Contrast / Comparison

LabVIEW

• Requires independent and autonomous

access mechanism/protocol to

instruments

• Does not require modeling access path

because all instruments are

represented as registers and states

• Dependent on NI Queued State Machine

and messaging API

1687

• Requires shared access

mechanism/protocol with dependence on

access state of other instruments

• Requires modeling of access path due to

dependence on access state of other

instruments

• Requires integration with tool board

models because of dependence on board

chain access path

The NSDL Process Flow

Generalized Batch Process Flow

Bradford G. Van Treuren and Michele Portolan

November 2008

19 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Tool Integration Process

Model
Composition

Process

Instrument
Access
Process

Vector
Generation
Process

Vector
Application/
Analysis
Process

20 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical Model Composition Process
Board/System Level Perspective : current 1149.1 tools

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Current
Tool
Circuit
Model

Test Generation
Process

START Pure 1149.1 Process

System
Description

Files
(HSDL)

21 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical Model Composition Process
Non-BScan Cluster Level Perspective : current 1149.1 tools proprietary implementation

• Similar process

for IEEE 1149.6

• Similar process

for memory

interconnect test

• Similar process

for IEEE 1532

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Cluster

Model Extensions
in Tool Native

Language

Cluster Extended Model
(Persistent, in memory,
or generated code)

Current
Tool

Circuit
Model

Test Generation
Process

START Pure 1149.1 Process

BSDL Extensions
or Proprietary

Device
Model Files

22 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical Model Composition Process
Instrument Level Perspective : current 1149.1 tools proprietary implementation

• Access to instruments

done through hand

coded programs in Tool

Native Language

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Instrument/Chain
Model Extensions
in Tool Native

Language

Instrument Extended Model
(Persistent, in memory,
or generated code)

Current
Tool

Circuit
Model

Instrument
Access
Process

START Pure 1149.1 Process

BSDL Extensions
or Proprietary
Instrument
Descriptions

23 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Instrument Access Process

Model
Composition

Process

Instrument
Extended
Model

Define Entity/Instrument(s)
Procedure Flow(s) to run

NOTE: NSDL can predefine
procedures for entire branches
in its procedure section to
define synchronization

requirements

User
defined
script

Retarget to
Chip(s) and
Schedule

User
defined JTAG
preconditions

Vector
Generation
Process

Optional

Is interactive? Can Tool support mode?

No

Yes

Yes

ERROR
No

Updates to Model

Updates to Model

24 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Vector Generation Process

Instrument
Access
Process

Iterate through
Procedure Schedules
and handle concurrent

access

Tool Native
Vector

Language

STAPL
Vector
Format

Serial
Vector
Format

Nat2SVF Nat2STAPL

Vector
Application/
Analysis
Process

Generate Vectors

Instrument
Extended
Model

25 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Native Vector Application/Analysis Process

Vector
Generation
Process

Tool Native
Vector

Language

Native Tool
Vector

Execution
Engine

Result Log
Result
Display

Analyze Results

Instrument
Extended
Model

26 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Embedded System Vector Application/Analysis Process

Vector
Generation
Process

Package Vector Files

Tool Native
Vector

Language

STAPL
Vector
Format

Serial
Vector
Format

Transfer Package to System

Apply Vectors to Target

Stored
Results

Displayed
Results

Actively analyze results Extract results Analyze results

Instrument
Extended
Model

The NSDL Process Flow
Generalized Interactive Process Flow

Bradford G. Van Treuren and Michele Portolan

November 2008

28 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Interactive Tool Integration Process

Model
Composition

Process

Interactive
Instrument
Management

Process

29 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Typical Model Composition Process
Instrument Level Perspective : current 1149.1 tools proprietary implementation

• Access to instruments via

parameterized GUI for

simple instruments

• Access to instruments via

interactive program files

�Not directly applicable to

embedded application

(Cannot replicate Circuit

Model)

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Instrument/Chain
Model Extensions
in Tool Native

Language

Instrument Extended Model
(Persistent, in memory,
or generated code)

Current
Tool

Circuit
Model

Interactive
Instrument
Management

Process

START Pure 1149.1 Process

BSDL Extensions
or Proprietary
Instrument
Descriptions

30 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Interactive Instrument Management Process

Model
Composition

Process

GUI
or

Interactive Procedure

GUI
or

Interactive Procedure

Instrument
Extended
Model

Event Queue /
Command Handler or Processor
(aka, Software Reactor Pattern)

Retarget
to Chip(s)

and Schedule

Pattern
Composer

Pattern
Player

Schedule
Events

User
defined JTAG
preconditions

Record
Vector

Sequences

Real-time
Application
of Vectors
to UUT

Used to support
embedded applications

The NSDL Process Flow

NSDL Instrument Description Model

Bradford G. Van Treuren and Michele Portolan

November 2008

32 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

HDL/PyDL � NSDL Comparison

NSDL
Composer

NSDL
Files

Instrument
Description

Model
(XML, SQLite,
MySQL, etc.)

Translate from
Instr. Descr. Model
to Your Favorite

Language or Populate
Your Own Model

HDL
Files

HDL
PyParser

XML
Files

Class
ModuleHDL

Class:HDL

Python
PDL

•Modeled in Python executable
directly

•Void of Tool TAP Controller
Knowledge

Python
PDL

Translate each
HDL + PyDL

to non-Python
language / Model
Representation

BSDL Ext.
Link to

Top Entity

•Unified
Representation

Model

•Multiple Association
Representation Model

Python Execution Environment

33 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

NSDL Model Composition Process
Device Level Perspective : future P1687 tools

NSDL
Composer

NSDL
Files

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Instrument/Chain
Model Extensions
in Tool Native

Language

Instrument
Description

Model
(XML, SQLite,
MySQL, etc.)

Via BSDL Extensions

Select Target
Instruments from
Instr. Descr. Model

Slow access
query interface

(Contains
qualified
HDL + PDL
information

from AST – aka
“The

Hierarchical
Content”)

Fast access
interface
(only the

information
needed for
current
target

instruments)

Targeted subset of
system/instrument model so it

will fit into memory

Instrument Extended Model
(Persistent, in memory,
or generated code)

Current
Tool

Circuit
Model

Instrument
Access
Process

START Performs
Syntactic and
Semantic

Checks based
on Abstract
Syntax Tree

(AST)

Optional
access to BSDL
Information

Identifies what
procedures are

available for each
entity/instrument
as well as the

access mechanism
definition

34 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Software Design Pattern: Flexible Command Interpreter for Test Languages

Flexible Command Interpreter:
A Pattern for an Extensible
and Language-Independent
Interpreter System,
Pattern Languages of Program
Design Volume 1, Addison
Wesley, 1995, pp 43-50.

35 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

NSDL Instrument Description Model

� Structural Elements

� Ports

� Registers

� Attributes

� Cell Types

� Instances

� Etc.

� Procedural Elements

� Procedures

� Ordered Statements (Queue for Agenda)

– Set

– Get

– Assign

– While

– ExpressionStmt

– Etc.

� Variables

� Synchronization dependencies

� Etc.

NSDL
Composer

NSDL
Files

Compose
Board/Fixture/

System
Model

Instrument
Description

Model
(XML, SQLite,
MySQL, etc.)

Via BSDL Extensions

Current
Tool

Circuit
Model

Optional
access to BSDL
Information

36 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

NSDL Instrument Procedural Description Model Elements
The Translator Implementation

� Abstract syntax tree view

� Semantic inference about usage (e.g., interactive vs. deferred)

� Semantic validation of tree dependency structure (e.g., instances are
properly defined)

� Referenced procedural element dependencies are validated

� Statements are represented as ordered XML objects

� Expressions are contained and applied as XML objects in the corresponding
ExprStatement subclass representations

� Expressions are ordered based on Abstract syntax tree to ensure correct
precedence ordering

� Boolean logic in Expressions maps directly to native language boolean logic

� Language translator implements execute() function for each statement
type

� Interpreter executes statements “in order” to write out translated file in
native language format

� Parametric information wrapped inside containing statement

37 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

FCI Example of NSDL to C++ Translation

�data1 := ‘1’;

�If sel1 and sel2 and not sel3 then

instr3.select();

reg2 := ‘011001001’;

end if;

�data1 = 1;

�If (sel1 & sel2 & !(sel3)) {

instr3.select();

reg2 = 0xc9;

}

�as = AssignmentStatement(lhs=data1, rhs=‘1’);

as.toAgenda();

as.execute(); // writes out “lhs = rhs;” when called by TestController

�ifstmt = IfStatement(Expression(And(sel1,And(sel2, Not(sel3)));

ifstmt.InsertSubStmt(CallStatement(instr=instr3, func=select, args=“”));

ifstmt.InsertSubStmt(AssignmentStatement(lhs=reg2, rhs=‘011001001’));

ifstmt.InsertSubStmt(EndifStatement());

ifstmt.toAgenda();

ifstmt.execute(); // writes out “if (“, calls Expression.execute(), writes out “) {“ then

// calls its SubStmts toAgenda() methods “in order” to perform their execute()

38 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Parameterization

� Use of generics to parameterize instantiations and procedures

� Instruments can define generic values (ex: register length, port width)

� Defined at instantiation time, high code reuse

– Ex: generic-width WSP block in “system” example declared as:

instrument generic_WSP is

generic (wrapper_select_signal : integer := 2)

port (….

Can be instantiated as

my_wsp_4: generic_WSP generic map (wrapper_select_signal => 4) …

or

my_wsp_16: generic_WSP generic map (wrapper_select_signal => 16) …

� Indexed literals to help deal with high number of identical instances

� Asic.nsdl in “ericsson” example

mbist_instance_<i> can be mbist_instance_0, mbist_instance_1, etc..

� Used in conjunction with generate loops: compact code

� Flexible and parametrical code

39 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Unified language (1)

� Same parameters used for both structural and procedures

� Flexible and self-contained code

� Same declaration space: easy to check for automated tool

� All information for a module contained in one place:

� Easy to debug and human readable

� Clean and effective partitioning for complex projects

� Functional description removes necessity for structural element keywords

� Procedure/functions define roles of ports and registers

� No need to specify it in structural description (hdl)

� No ambiguity on attribute interpretation

� No restriction on instrument types

40 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Unified language (2)
� NSDL descriptions are self-contained

� No notion of TAP : only the P1687 network is described

� Completely independent and portable descriptions

� 1687.x would completely reuse current description files

� Synchronisation with external interfaces

� Ports/registers can describe non-scan paths

� Associated procedures give the scan-based synchronisation primitives

� Compatibility with any arbitrary interface

� Inter-instrument communications

� Port values can be used in functions to define synchronisation points

� Same thing for dependencies

41 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

VHDL heritage

� Well defined types and type generation rules

� Strict typing checks make code robust

� No ambiguities in procedures: portable between implementations

� Possibilities of exploiting VHDL hardware-oriented types (std_logic, ulogic,

integers, unsigned, etc…)

� Extensively verified and robust syntax

� Years of use make for unambiguous interpretation

� Hardware-oriented language

� Terse and unambiguous syntax

� Natural support of hierarchy and point-to-point connections

� Hardware flow friendly: architectures and configurations can be adapted to each

step from manufacture to field use

The NSDL Process Flow

Backup Slides

Bradford G. Van Treuren and Michele Portolan

November 2008

43 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Dynamic Programming Languages (aka, Scripting Languages like Tcl and Python)

(From: http://www.tcl.tk/doc/scripting.html)

� Dynamic languages are typically interpreted, highly introspective, and

emphasize integration and extension to add new capabilities.

� Scripting languages are intended primarily for plugging together components.

� Scripting languages do their error checking at the last possible moment

(execution of that statement).

� Compiled byte code is still an interpreted language where most compilers do

not perform semantic validation until run-time via the expression validator.

� Dynamic Programming Language compilers are unable to validate information

residing in extension modules written in a different language.

� If instrument Instr3 is not represented in a C extension, that error will not be

reported until the scripted statement using Instr3 is executed, leaving the circuit in a

half modified state.

� Dynamic Programming Languages require extensive error handling code that is

generally not written by most users.

� Script generators can provide continuity of model access across extensions.

44 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

Relation of Instrument Description Model to Dynamic
Programming Languages

� Generation of model elements in

native scripting language ensures

semantic accuracy based on NSDL IDM

and language extension mechanisms.

� May generate scripting language

extensions in C/C++ dynamically based

on common API for model information

access.

� May compose native circuit model in

tool’s software language based on

structure and procedural elements

defined in the NSDL IDM.

Compose Target
Instrument/Chain
Model Extensions
in Tool Native
Language

Instrument
Description

Model
(XML, SQLite,
MySQL, etc.)

Select Target
Instruments from
Instr. Descr. Model

Targeted subset of
system/instrument model so it

will fit into memory

Instrument Extended Model
(Persistent, in memory,
or generated code)

Current
Tool
Circuit
Model

•Tool vendor creates their
own circuit model used by
their tool

•Instrument provider
unable to define each tool
vendor’s model elements
unless model access is
standardized

•Entity structure is possible
to represent generically

•Procedural interface must
still be defined by the
instrument provider to
obtain proper language
extension access

•Instrument access inside
procedures is based on Tool
Model access definition

45 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

NSDL Model Composition Process
Board/System Level Perspective

NSDL
Composer

NSDL
Files

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Instrument/Chain
Model Extensions
in Tool Native

Language

Instrument
Description

Model
(XML, SQLite,
MySQL, etc.)

Via BSDL Extensions

Select Target
Instruments from
Instr. Descr. Model

Fast access
interface
(only the

information
needed for
current
target

instruments)

Targeted subset of
system/instrument model so it

will fit into memory

Instrument Extended Model
(Persistent, in memory,
or generated code)

Current
Tool

Circuit
Model

Instrument
Access
Process

START

Uses System Level
Entities to identify

instrument
procedural

dependencies
(reusable

synchronization
elements outside

the device)

(Board/System level
NSDL procedural

description applied
to hierarchical

branches)

Optional
access to BSDL
Information

System
Description
File (HSDL?)

Via System Entity
Identifiers

46 | NSDL Process Flow | November 2008 All Rights Reserved © Alcatel-Lucent 2008

NSDL Model Composition Process
Instrument Tool Provider - Legacy Perspective (Al’s case)

NSDL
Composer

NSDL
Files

BSDL
Files Compose

Board/Fixture/
System
Model

Board/
Fixture
Netlists

Compose Target
Instrument/Chain
Model Extensions
in Tool Native

Language

Instrument Description
Model (XML, SQLite,

MySQL, etc.)

Via BSDL Extensions

Select Target
Instruments from
Instr. Descr. Model

Instrument Extended Model
(As defined in original tool)

Current
Tool

Circuit
Model

Instrument
Access
Process

START

Optional
access to BSDL
Information

System
Description
Files (HSDL?)

Via System Entity

Translate Model
Information to

Legacy Instrument
Description Format

Legacy
Data
Files

